ПРОГНОЗИРОВАНИЕ РАЗВИТИЯ СОЛНЕЧНОЙ ЭНЕРГЕТИКИ В РЕГИОНЕ

Title

Forecasting the solar energy development in the region

Автор(ы)

Б.В. Корнейчук

Author(s)

B.V. Korneychuk

DOI

10.5922/1994-5280-2020-3-2

Страницы/Pages

16-25

Статья

Загрузить

Ключевые слова

энергетика региона, региональная экономика, энергетический переход, солнечная энергия, логистическая модель, прогнозирование.

Keywords

regional energy, regional economy, energy transition, solar energy, logistic model, forecasting.

Аннотация

Рассмотрена проблема прогнозирования мощности солнечной энергетики регионов и стран мира в контексте глобальной тенденции энергетического перехода. Актуальность проблемы обусловлена тем, что солнечная энергетика играет ключевую роль в процессе замещении традиционных источников энергии возобновляемыми источниками. Однако прогнозы развития солнечной энергетики обычно характеризуется значительными ошибками, что требует разработки надежных методов прогнозирования. Для решения данной задачи предложен мульти-трендовый подход к построению региональной функции роста мощности солнечной энергетики, основанный на моделировании роста мощности в виде линейной комбинации логистического, линейного и экспоненциального трендов с весовыми коэффициентами, обратно пропорциональными отклонениям трендов от фактических данных. На основе метода были составлены прогнозы мощности солнечной энергетики для ряда регионов и стран мира на период 2017–2019 гг., которые показали высокую надежность, разработан прогноз на период 2020–2023 гг. Показано, что причиной существенных ошибок прогнозов часто служит использование логистической кривой в качестве универсального инструмента анализа без учета особенностей региона. Так, причиной систематического занижения прогнозов для Китая служит игнорирование экспоненциального компонента роста мощности солнечной энергетики.

Abstract (summary)

The problem of forecasting the dynamics of the development of solar energy in the region in the context of the global trend of energy transition is considered. The urgency of the problem is due to the fact that forecasts of the development of solar energy are usually characterized by relatively large errors. To solve this problem, the author proposed a multi-trend approach to constructing a regional function for the growth of solar power capacity. The method is based on the description of the dynamics of power growth in the form of the average value of logistic, linear and exponential trends. The weighting factors are equal to values that are inversely proportional to the errors of the corresponding trends. Based on this method, forecasts of solar energy capacity were calculated for Africa, Asia, Europe, North America and South America for the period 2017–2019. The validity of the method is confirmed by the fact that these forecasts are characterized by a relatively low deviation from the actual data. The author has developed a forecast for these regions for the period 2020-2023. It is shown that the reason for the low reliability of most forecasts is the desire to use the logistic curve as a universal analysis tool. This approach absolutes the logistics trend and does not take into account the specifics of the region. However, for some regions, a linear or exponential trend can serve as the dominant growth trend in solar energy capacity. In particular, the reason for the systematic underestimation of forecasts for China was the ignorance of the exponential component of the growth of solar energy capacity.

Список литературы

1. Корнейчук Б.В. Прогнозирование производства альтернативной энергии методом логистического тренда // Энергобезопасность и энергосбережение. 2015. № 5. С. 22–26.

2. Распоряжение Правительства Российской Федерации № 1523-р от 9 июня 2020 г. «Об энергетической стратегии Российской Федерации на период до 2035 г.». [Электр. ресурс]. URL: https://minenergo.gov.ru/node/1026 (дата обращения 5.08.2020).

3. Annual Energy Outlook. 2009. With projections to 2030 // EIA. [Электр. ресурс]. URL: https://large. stanford.edu/publications/coal/references/docs/0383(2009).pdf (дата обращения 5.08.2020).

4. Annual Energy Outlook. 2010. With projections to 2035 // EIA. [Электр. ресурс]. URL: https://www. hsdl.org/?view&did=15957 (дата обращения 5.08.2020).

5. Castillo C., Silva F., Lavalle C. An assessment of the regional potential for solar power generation in EU-28 // Energy Policy. 2016. Vol. 88. P. 86–99.

6. Davidsson S., Grandell L., Watchmeister H., Hook M. Growth curves and sustained commissioning modeling of renewable energy: Investigating resource constraints for wind energy // Energy Policy. 2014. Vol. 73. P. 767–776.

7. Energy [R]evolution: A sustainable world energy outlook 2015. World energy scenarios // SolarPower Europe. [Электр. ресурс]. URL: www.researchgate.net/publications/312193745 (дата обращения 5.08.2020).

8. Giovanis A., Skiadas C. A stochastic logistic innovation diffusion model studying the electricity consumption in Greece and United States // Technological Forecasting and Social Change. 1999. № 61. P. 235–246.

9. Global Market Outlook 2012: For photovoltaics untill 2016 // EPIA. [Электр. ресурс]. URL: https://files. epia.org/files/Global-Market-Outlook-2016.pdf (дата обращения 5.08.2020).

10. Global Market Outlook 2019: For Solar Power (2020–2024) // Solar Power Europe. [Электр. ресурс]. URL: https://www.bigpowernews.ru/photos/0/0_F7FAJfaHPkys.pdf (дата обращения 26.09.2020).

11. Hansen J., Narbel P., Aksnes D. Limits to growth in the renewable energy sector // Renewable and Sustainable Energy Reviews. 2017. Vol. 70. P. 769–774.

12. Harris T., Devkota J., Khanna V., Eranki P., Landis A. A logistic growth curve modeling of US energy production and consumption // Renewable and Sustainable Energy Reviews. 2018. Vol. 96. P. 46–57.

13. Hook M., Junchen L., Oba N., Snowden S. Descriptive and predictive growth curves in energy system analysis // Natural Resources Research. 2011. Vol. 20. P. 103–116.

14. Jaeger-Waldau A. PV Status Report 2006 // European Comission Joint Research Centre. [Электр. ресурс]. URL: https://doi.org/10.2760/326629 (дата обращения 5.08.2020).

15. Kucharavy D., Guio R. Logistic substitution model and technological forecasting // Procedia Engeneering. 2011. Vol. 9. P. 402–416.

16. Kwasnicki W. Logistic growth of the global economy and competitiveness of nations // Technological Forecasting & Social Change. 2013. Vol. 80. P. 50–76.

17. Madsen D., Hansen J. Outlook of solar energy in Europe based on economic growth characteristics // Renewable and Sustainable Energy Reviews. 2019. Vol. 114. [Электр. ресурс]. URL: https://doi. org/10.1016/j.rser.2019.109306 (дата обращения 5.08.2020).

18. Mitrova T., Melnikov Y. Energy transition in Russia // Energy Transit. 2019. Vol. 3. P. 73–80.

19. Mohamed Z., Bodger P. A variable asymptote logistic (VAL) model to forecast electricity consumption // International Journal of Computer Applications in Technology. 2005. Vol. 22. P. 65–72.

20. Morales J., Conejo A., et al. Integrating renewables in electricity markets: Operational problems. N.Y.: Springer, 2014.

21. Moriarty P., Honnery D. Is there an optimum level for renewable energy? // Energy Policy. 2011. Vol. 39. P. 2748–2753.

22. Platzer M.D. US solar photovoltaic manufacturing: Industry trends, global competition, federal support, 2012 // Congressial Research Service. [Электр. ресурс]. URL: www.crs.gov (дата обращения 5.08.2020).

23. Rypdal K. Empirical growth models for the renewable energy sector // Advances in Geosciences. 2018. № 45. P. 35–44.

24. Sohoni V., Gupta S., Nema R. A critical review on wind turbine power curve modeling techniques and their applications in wind based energy systems // Journal of Energy. 2016. [Электр. ресурс]. URL: https://doi.org/10.1155/2016/8519785 (дата обращения 5.08.2020).

25. Teske S., Masson G. Solar generation 6. Solar photovoltaic electricity empowering the world. 2011 // EPIA. [Электр. ресурс]. URL: http://inis.idea.org/search/search/aspx?orig-q=RN:42054991 (дата обращения 5.08.2020).

26. Tsai S., Xue Y., Zhang J., Chen Q., Liu Y., Zhou J., Dong W. Models for forecasting growth trends in renewable energy // Renewable and Sustainable Energy Reviews. 2017. Vol. 77. P. 1169–1178.

27. World Energy Outlook. 2013 // IEA. [Электр. ресурс]. URL: https://www.iea.org/reports/world-energy-outlook-2013 (дата обращения 5.08.2020).

28. World Energy Outlook. 2016 // IEA. [Электр. ресурс]. URL: https://www.iea.org/reports/world-energy-outlook-2016 (дата обращения 5.08.2020).

29. World Energy Outlook. 2020 // IEA. [Электр. ресурс]. URL: https://www.iea.org/reports/world-energy-outlook-2020 (дата обращения 5.08.2020).

References

1. Korneychuk B. The renewable energy generation forecast made with the logistic trend method. Ener­gobezopasnosti energozberezhenie, 2015, no. 5, pp. 22–26. (In Russ.).

2. Rasporyazhenie pravitel’stva rossiiskoy federatsii No. 1523-р ot 9 iyunya 2020 «Ob energeticheskoy strategii rossiiskoy federatsii na period do 2035». [Order of the Government of the Russian Federation No. 1523-р dated June 9, 2020 «On the energy strategy of the Russian Federation for the period up to 2035»]. URL: https://minenergo.gov.ru/node/1026 [Accessed 5.08.2020]. (In Russ.).

3. Annual Energy Outlook. 2009. With projections to 2030. EIA. URL: https://large.stanford.edu/publica­tions/coal/references/docs/0383(2009).pdf [Accessed 5.08.2020].

4. Annual Energy Outlook. 2010. With projections to 2035. EIA. URL: https://www.hsdl.org/?view&­did=15957 [Accessed 5.08.2020].

5. Castillo C., Silva F., Lavalle C. An assessment of the regional potential for solar power generation in EU-28. Energy Policy, 2016, vol. 88, pp. 86–99.

6. Davidsson S., Grandell L., Watchmeister H., Hook M. Growth curves and sustained commissioning modeling of renewable energy: Investigating resource constraints for wind energy. Energy Policy, 2014, vol. 73, pp. 767–776.

7. Energy [R]evolution: A sustainable world energy outlook 2015. World energy scenariosSolarPower Europe. URL: www.researchgate.net/publications/312193745 [Accessed 5.08.2020].

8. Giovanis A., Skiadas C. A stochastic logistic innovation diffusion model studying the electricity con­sumption in Greece and United States. Technological Forecasting and Social Change, 1999, no. 61, pp. 235–246.

9. Global Market Outlook 2012: For photovoltaics untill 2016EPIA. URL: https://files.epia.org/files/Glob­al-Market-Outlook-2016.pdf [Accessed 5.08.2020].

10. Global Market Outlook 2019: For Solar Power (2020–2024). Solar Power Europe. URL: https://www. bigpowernews.ru/photos/0/0_F7FAJfaHPkys.pdf [Accessed 26.09.2020].

11. Hansen J., Narbel P., Aksnes D. Limits to growth in the renewable energy sector. Renewable and Sustainable Energy Reviews, 2017, vol. 70, pp. 769–774.

12. Harris T., Devkota J., Khanna V., Eranki P., Landis A. A logistic growth curve modeling of US energy production and consumption. Renewable and Sustainable Energy Reviews, 2018. vol. 96, pp. 46–57.

13. Hook M., Junchen L., Oba N., Snowden S. Descriptive and predictive growth curves in energy system analysis. Natural Resources Research, 2011, vol. 20 (2), pp. 103–116.

14. Jaeger-Waldau A. PV Status Report 2006. European Comission Joint Research Centre. URL: https:// doi.org/10.2760/326629 [Accessed 5.08.2020].

15. Kucharavy D., Guio R. Logistic substitution model and technological forecasting. Procedia Engeneer­ing, 2011, vol. 9, pp. 402–416.

16. Kwasnicki W. Logistic growth of the global economy and competitiveness of nations. Technological Forecasting & Social Change, 2013, vol. 80, pp. 50–76.

17. Madsen D., Hansen J. Outlook of solar energy in Europe based on economic growth characteris­tics. Renewable and Sustainable Energy Reviews, 2019, vol. 114. URL: https://doi.org/10.1016/j. rser.2019.109306 [Accessed 5.08.2020].

18. Mitrova T., Melnikov YEnergy transition in Russia. Energy Transit, 2019, vol. 3, pp. 73–80.

19. Mohamed Z., Bodger P. A variable asymptote logistic (VAL) model to forecast electricity consumption. International Journal of Computer Applications in Technology, 2005, vol. 22, pp. 65–72.

20. Morales J., Conejo A., et al. Integrating renewables in electricity markets: Operational problems. N.Y.: Springer, 2014.

21. Moriarty P., Honnery D. Is there an optimum level for renewable energy? Energy Policy, 2011, vol. 39, pp. 2748–2753.

22. Platzer M.D. US solar photovoltaic manufacturing: Industry trends, Ggobal competition, federal sup­port, 2012. Congressial Research Service. URL: www.crs.gov [Accessed 5.08.2020].

23. Rypdal K. Empirical growth models for the renewable energy sector. Advances in Geosciences, 2018, no. 45, pp. 35–44.

24. Sohoni V., Gupta S., Nema RA critical review on wind turbine power curve modeling techniques and their applications in wind based energy systems. Journal of Energy, 2016. URL: https://doi. org/10.1155/2016/8519785 [Accessed 5.08.2020].

25. Teske S., Masson G. Solar generation 6. Solar photovoltaic electricity empowering the world. 2011. EPIA. URL: http://inis.idea.org/search/search/aspx?orig-q=RN:42054991 [Accessed 5.08.2020].

26. Tsai S., Xue Y., Zhang J., Chen Q., Liu Y., Zhou J., Dong W. Models for forecasting growth trends in renewable energy. Renewable and Sustainable Energy Reviews, 2017, vol. 77, pp. 1169–1178.

27. World Energy Outlook. 2013. IEA. URL: https://www.iea.org/reports/world-energy-outlook-2013 [Accessed 5.08.2020].

28. World Energy Outlook. 2016. IEA. URL: https://www.iea.org/reports/world-energy-outlook-2016 [Accessed 5.08.2020].

29. World Energy Outlook. 2020IEA. URL: https://www.iea.org/reports/world-energy-outlook-2020 [Accessed 5.08.2020].