Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Смоленский государственный университет» Кафедра математического анализа

«Утверждаю»
Проректор по учебнометодической работе
_____ Ю. А. Устименко.
«6» сентября 2022 г.

Рабочая программа дисциплины Б1.В.ДВ.01.02 Стохастическое исчисление

Направление подготовки: 02.04.01 Математика и компьютерные науки Направленность (профиль): Методы моделирования в анализе и стохастике Форма обучения - очная

Курс -1,2Семестр -2,3,4

Всего зачетных единиц -10, часов -360

Форма отчетности: 3ачет -2,4 семестры, 3к3амен -3 семестр.

Программу разработал кандидат физико-математических наук, доцент Хартов А. А.

Одобрена на заседании кафедры «30» августа 2022 г., протокол № 11

Смоленск 2022 г.

1. Место дисциплины в структуре ОП

Дисциплина «Стохастическое исчисление» содержится в Блоке 1 дисциплин из части, формируемой участниками образовательных отношений, дисциплинам по выбору. Она изучается во 2-ом, 3-ем и 4-ом семестрах. С одной стороны, она отчасти является вспомогательной для изучения таких дисциплин, как «Прикладные стохастические модели» и «Аналитические и вероятностные методы». С другой стороны, содержательно в ней находят применение понятия, факты, методы, пройденные в рамках дисциплин «Дополнительные главы теории вероятностей», «Дискретные и вероятностные модели», «Вероятность и аппроксимация», «Аналитические и вероятностные методы».

Целью освоения дисциплины является содействие становлению профессиональной компетентности магистра математики и компьютерных наук за счет изучения на продвинутом уровне понятий и методов случайных процессов и стохастического исчисления и ех приложений.

Изучение курса основано на традиционных методах высшей школы, тесной взаимосвязи со смежными курсами, а также на использовании современной учебной, методической литературы, информационных и образовательных технологий.

2. Планируемые рез	ультаты обучения по дисциплине
Компетенция	Индикаторы достижения
ПК-1. Способен осуществлять поиск,	Знает: теоретические основы и технологии
анализ и систематизацию научной	организации научно-исследовательской
информации в области анализа и	деятельности, современный аппарат,
стохастики для реализации научно-	методологическую базу и сферу приложения
исследовательских проектов	анализа и стохастики, пути использования
	имеющихся знаний при проведении научно-
	исследовательской работы.
	Умеет: осуществлять поиск, анализ,
	систематизацию научной информации в
	области анализа и стохастики и их
	приложений для реализации научно-
	исследовательских проектов.
	Владеет: навыками организации и
	проведения научно-исследовательской
	деятельности в ходе выполнения
	профессиональных функций.
ПК-2. Способен применять методы	Знает: методы стохастического и
стохастического и аналитического	аналитического математического
математического моделирования для	моделирования.
решения прикладных задач	Умеет: выбирать методики разработки
	требований к модели, строить причинно-
	следственные связи, формулировать
	требования к модели и цели ее создания,
	исходя из анализа проблем, потребностей и
	возможностей, анализировать соответствие
	требованиям существующих моделей,
	алгоритмизировать деятельность.
	Владеет: навыками анализа проблемной
	ситуации, разработки требований к модели,
	постановки цели, разработки концепции
	модели, стохастического и аналитического
	математического моделирования для
	решения прикладных задач.

3. Содержание дисциплины

Основные понятия теории случайных процессов. Предмет теории случайных процессов и некоторые задачи. Понятие случайного процесса. Траектории. Стохастическая эквивалентность. Сигма-алгебра, порожденная процессом. Конечномерные распределения случайного процесса. Теорема Колмогорова о согласованных мерах. Измеримость процесса. Сепарабельность процесса. Непрерывность процесса. Критерий Колмогорова непрерывности п.н. Критерий отсутствия разрывов второго рода.

Классы случайных процессов. Стационарные процессы. Процессы со стационарными приращениями. Стационарные в широком смысле процессы. Спектральные представления. Процессы с независимыми приращениями. Пуассоновский процесс. Гауссовские процессы. Винеровский процесс. Броуновский мост. Процесс Орнштейна-Уленбека. Дробное броуновское движение. Процессы Леви.

Случайные процессы и сходимость. Сходимость конечномерных распределений. Слабая сходимость. Принципы инвариантности.

Стохастические интегралы. Случайные меры с некоррелированными значениями и интегралы по ним. Пуассоновские случайные меры и интегралы. Предельные теоремы для пуассоновских интегралов. Стохастический интеграл по винеровскому процессу. Интегральные представления важных гауссовских процессов. Устойчивые случайные меры и интегралы по ним.

Стохастические дифференциальные уравнения. Формула Ито. Броуновское локальное время. Формула Танаки. Стохастическая экспонента. Существование и единственность сльного решения стохастического дифференциального уравнения. Методы решения стохастических дифференциальных уравнений. Теорема Гирсанова. Диффузионные процессы.

Гауссовские случайные процессы. Гауссовские векторы в линейном пространстве. Ковариационный оператор. Измеримые функционалы. Ядро гауссовского распределения. Теорема о факторизации. Ядра для важных гауссовских процессов. Воспроизводящее ядро. Теорема Камерона-Мартина. Принцип концентрации.

Гауссовские случайные процессы и аппроксимация. Разложения гауссовских векторов. Разложение Кархунена-Лоэва. Конструкция Леви. Теория информационной сложности и ее задачи. Сложность аппроксимации в среднем и по вероятности. Проблематика задач аппроксимации для случайных полей высокой параметрической размерности. Трактабильность и ее типы.

4. Тематический план

2 семестр

	<u>z concerp</u>						
No	Разделы и	Всего		Формы занятий			
Π/Π	темы	часов	лекции	семинары	практические	лабораторные	самостоятельная
					занятия	занятия	работа
1.	Основные	40	6		6		28
	понятия						
	теории						
	случайных						
	процессов						
2.	Классы	40	6		6		28
	случайных						
	процессов.						
3.	Случайные	28	4		4		20
	процессы и						
	сходимость						
Всего за семестр		108	16		16		76

$N_{\underline{0}}$	Разделы и	Всег		Формы занятий			
п/	темы	O	лекци	семинар	практическ	лабораторн	самостоятельн
П		часо	И	Ы	ие занятия	ые занятия	ая работа
		В					
1.	Стохастические	56	8		8		40
	интегралы.						
2.	Стохастические дифференциальн ые уравнения.	61	8		8		45
	Контроль	27					
	Всего за семестр	144	16		16		112

4 семестр

	<u> </u>						
$N_{\underline{0}}$	Разделы и	Всег		Формы занятий			
п/	темы	o			-		
П		часо	лекци	семинар	практически	лабораторны	самостоятельна
		В	И	Ы	е занятия	е занятия	я работа
1.	Гауссовские	60	10		10		40
	случайные						
	процессы.						
2.	Гауссовские	48	6		6		36
	случайные						
	процессы и						
	аппроксимаци						
	Я.						
]	Всего за семестр	108	16		16		76

5. Виды образовательной деятельности

Занятия лекционного типа

2 семестр

Лекции 1-3. Основные понятия теории случайных процессов. Предмет теории случайных процессов и некоторые задачи. Понятие случайного процесса. Траектории. Стохастическая эквивалентность. Сигма-алгебра, порожденная процессом. Конечномерные распределения случайного процесса. Теорема Колмогорова о согласованных мерах. Измеримость процесса. Сепарабельность процесса. Непрерывность процесса. Критерий Колмогорова непрерывности п.н. Критерий отсутствия разрывов второго рода.

Лекции 4-6. Классы случайных процессов». Стационарные процессы. Процессы со стационарными приращениями. Стационарные в широком смысле процессы. Спектральные представления. Процессы с независимыми приращениями. Пуассоновский процесс. Гауссовские процессы. Винеровский процесс. Броуновский мост. Процесс Орнштейна-Уленбека. Дробное броуновское движение. Процессы Леви.

Лекции 7-8. Случайные процессы и сходимость. Сходимость конечномерных распределений. Слабая сходимость. Принципы инвариантности.

3 семестр

Лекции 1-4. Стохастические интегралы. Случайные меры с некоррелированными значениями и интегралы по ним. Пуассоновские случайные меры и интегралы. Предельные теоремы для пуассоновских интегралов. Стохастический интеграл по винеровскому процессу. Интегральные

представления важных гауссовских процессов. Устойчивые случайные меры и интегралы по ним.

Лекции 5-8. Стохастические дифференциальные уравнения. Формула Ито. Броуновское локальное время. Формула Танаки. Стохастическая экспонента. Существование и единственность сльного решения стохастического дифференциального уравнения. Методы решения стохастических дифференциальных уравнений. Теорема Гирсанова. Диффузионные процессы.

4 семестр

Лекции 1-5. Гауссовские случайные процессы. Гауссовские векторы в линейном пространстве. Ковариационный оператор. Измеримые функционалы. Ядро гауссовского распределения. Теорема о факторизации. Ядра для важных гауссовских процессов. Воспроизводящее ядро. Теорема Камерона-Мартина. Принцип концентрации.

Лекции 6-8. Гауссовские случайные процессы и аппроксимация. Разложения гауссовских векторов. Разложение Кархунена-Лоэва. Конструкция Леви. Теория информационной сложности и ее задачи. Сложность аппроксимации в среднем и по вероятности. Проблематика задач аппроксимации для случайных полей высокой параметрической размерности. Трактабильность и ее типы.

Занятия семинарского типа

2 семестр

Практические занятия 1-3. «Основные понятия теории случайных процессов».

Задания для аудиторной работы: задачи №10.1-10.47 (нечетные) из [6] списка доп. литературы. Задания для самостоятельной работы: задачи №10.1-10.47 (четные) из [6] списка доп. литературы.

Практические занятия 4-6. «Классы случайных процессов». Задания для аудиторной работы: задачи №10.121-10.180 (нечетные) из [6] списка доп. литературы. Задания для самостоятельной работы: задачи №10.121-10.180 (четные) из [6] списка доп. литературы.

Практические занятия 7-8. «Случайные процессы и сходимость».

Задания для аудиторной работы: Упражнения 11.2, 11.7, 11.10, 11.12 из [3] списка доп. литературы; Задачи на с. 91, 112, 172, 190 (с нечетными номерами) из [1] списка доп. литературы.

Задания для самостоятельной работы: Упражнения 11.4, 11.8, 11.11 из [3] списка доп. литературы; задачи на с. 91, 112, 172, 190 (с четными номерами) из [1] списка доп. литературы.

3 семестр

Практические занятия 1-4. «Стохастические интегралы».

Задания для аудиторной работы: Упражнения 11.1-11.5 (нечетные) Главы 1 из [2], 2.1-2.4 (нечетные) Главы 2 из [2].

Задания для самостоятельной работы: Упражнения 11.1-11.5 (четные) Главы 1 из [2], 2.1-2.4 (четные) Главы 2 из [2].

Практические занятия 5-8. «Стохастические дифференциальные уравнения».

Задания для аудиторной работы: Упражнения 4.1-4.7, 5.1, 8.1-8.11, 10.1-10.3 (нечетные) Главы 2 из [2].

Задания для самостоятельной работы: Упражнения 4.1-4.7, 5.1, 8.1-8.11, 10.1-10.3 (нечетные) Главы 2 из [2].

4 семестр

Практические занятия 1-5. «Гауссовские случайные процессы».

Задания для аудиторной работы: упражнения 1-12 на с. 38-39, 1-14 на с. 69-70, 1-9 на с. 83-84 из [5] списка доп. литературы (нечетные номера).

Задания для самостоятельной работы: упражнения 1-12 на с. 38-39, 1-14 на с. 69-70, 1-9 на с. 83-84 из [5] списка доп. литературы (четные номера).

Практические занятия 6-8. «Гауссовские случайные процессы и аппроксимация».

Примеры индивидуальных заданий для аудиторной и самостоятельной работы:

№1. Задан гауссовский случайный процесс (винеровский процесс, броуновский мост, процесс Орнштейна-Уленбека и т.д.). Для данного процесса: 1) получить аналитические представления сложности аппроксимации в среднем и по вероятности, 2) получить верхние и нижние оценки для этих величин, 3) реализовать алгоритм вычисления сложности аппроксимации в среднем по заданному порогу опибки, построить соответствующий график зависимости, 4) реализовать алгоритм вычисления сложности аппроксимации по вероятности по заданным значениям порога опибки и уровня значимости, построить соответствующий график зависимости. 5) с помощью величин сложности в среднем и по вероятности смоделировать на компьютере данный случайный процесс с любой заданной точностью.

№2. Задано гауссовское случайное поле (броуновский лист, броуновская «подушка» и т.д.) с данной параметрической размерностью. Для данного случайного поля: 1) получить аналитическое представление сложности аппроксимации в среднем, 2) получить оценки для этих величин на основе имеющихся теоретических результатов и построить соответствующие графики зависимости, 3) реализовать алгоритм вычисления сложности аппроксимации в среднем по заданному порогу ошибки, построить соответствующий график зависимости, 4) провести сравнительный анализ результатов вычислений и соответствующих теоретических результатов. 5) с помощью величины сложности в среднем смоделировать на компьютере данное случайное поле с любой заданной точностью.

На <u>каждом</u> практическом занятии обучающимся задаются *контрольные вопросы*: по материалам соответствующей лекции дать определения важнейших понятий, перечислить свойства объекта, изложить метод, напомнить формулировку той или иной теоремы.

Самостоятельная работа

Задания для самостоятельной работы приводятся в планах практических занятий.

6. Критерии оценивания результатов освоения дисциплины (модуля)

6.1. Оценочные средства и критерии оценивания для текущей аттестации

Проведение текущего контроля в 2-ом, 3-ем и 4-ом семестрах осуществляется на каждом практическом занятии - в процессе выполнения заданий для аудиторной работы и в процессе проверки домашней самостоятельной работы.

Критерии оценивания заданий

1. Нормы оценивания работы

№ п/п	Критерии	Количество баллов (*)
1	Качество выполнения задания	3 балла
2	Качество оформления	2 балла

(*) Возможна градация в 0,25 балла.

2. Шкала опенивания залания:

п/п	Оценка	Количество баллов
1	Отлично	5
2	Хорошо	4
3	Удовлетворительно	3
4	Неудовлетворительно	0-2

6.2. Оценочные средства и критерии оценивания для промежуточной аттестации

Промежуточная аттестация во 2-ом и 4-ом семестрах осуществляется посредством прохождения зачета. Зачет выставляется по результатам работы студента в течение семестра.

Критерии выставления зачёта.

Для получения зачета студент должен выполнить на оценку не ниже «удовлетворительно/зачтено» всех видов работ для текущей аттестации. В противном случае ставится «не зачтено».

Промежуточная аттестация 3-м семестре осуществляется посредством проведения экзамена.

Вопросы к экзамену

- 1. Предмет теории случайных процессов.
- 2. Понятие случайного процесса.
- 3. Траектории случайного процесса.
- 4. Стохастическая эквивалентность.
- 5. Сигма-алгебра, порожденная процессом.
- 6. Конечномерные распределения случайного процесса.
- 7. Теорема Колмогорова о согласованных мерах.
- 8. Измеримость процесса.
- 9. Сепарабельность процесса.
- 10. Непрерывность процесса.
- 11. Критерий Колмогорова непрерывности п.н.
- 12. Критерий отсутствия разрывов второго рода.
- 13. Стационарные процессы.
- 14. Процессы со стационарными приращениями.
- 15. Стационарные в широком смысле процессы.
- 16. Спектральные представления.
- 17. Процессы с независимыми приращениями.
- 18. Пуассоновский процесс.
- 19. Свойства пуассоновского процесса.
- 20. Гауссовские процессы.
- 21. Винеровский процесс.
- 22. Свойства винеровского процесса.
- 23. Броуновский мост.
- 24. Процесс Орнштейна-Уленбека.
- 25. Дробное броуновское движение.
- 26. Процессы Леви.
- 27. Свойства процессов Леви.
- 28. Сходимость конечномерных распределений.
- 29. К.м.р.-принцип инвариантности.
- 30. Слабая сходимость.
- 31. Принцип инвариантности Донскера в пространстве Скорохода.
- 32. Принцип инвариантности Донскера в пространстве непрерывных функций.
- 33. Сходимость эмпирических процессов.

Образец экзаменационного задания

- 1. Критерий Колмогорова непрерывности п.н.
- 2. Принцип инвариантности Донскера в пространстве Скорохода.

Критерии оценивания ответа на экзамене

1. Нормы оценивания ответа

№п/п	Структурная часть билета	Количество баллов
1	Правильный ответ на каждый вопрос	10 баллов

2. Шкала оценивания работы:

п/п	Оценка	Количество баллов
1	Отлично	17-20
2	Хорошо	13-16
3	Удовлетворительно	9-12
4	Неудовлетворительно	менее 9

7. Перечень основной и дополнительной учебной литературы

7.1. Основная литература

- 1. Круглов, В. М. Случайные процессы в 2 ч. Часть 1. Основы общей теории : учебник для вузов / В. М. Круглов. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2022. 276 с. (Высшее образование). ISBN 978-5-534-01748-9. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/489906
- 2. Круглов, В. М. Случайные процессы в 2 ч. Часть 2. Основы стохастического анализа: учебник для вузов / В. М. Круглов. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2022. 280 с. (Высшее образование). ISBN 978-5-534-02086-1. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/490917

7.2. Дополнительная литература

- 1. Биллингсли П. Сходимость вероятностных мер, Москва: Издательство «Наука», 1977.
- 2. Бородин А. Н. Случайные процессы, СПб: Издательство «Лань», 2013.
- 3. Лифшиц М. А. Случайные процессы от теории к практике, СПб: Издательство «Лань», 2016.
 - 4. Лифшиц М. А. Лекции по гауссовским процессам, СПб: Издательство «Лань», 2016.
 - 5. Лифшиц М. А. Гауссовские случайные функции, Киев: Издательство «ТВіМС», 1995.
- 6. Прохоров А. В., Ушаков В. Г., Ушаков Н. Г., Задачи по теории вероятностей. Основные понятия. Предельные теоремы. Случайные процессы: учебное пособие, Москва: Изд-во «КДУ», 2009.
 - 7. Ротарь В. И. Теория вероятностей, Москва: Изд-во «Высшая школа», 1992.
 - 8. Ширяев А. Н. Вероятность в 2-х кн., Москва: Изд-во «МЦНМО», 2017.

7.3. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

- Система дистанционного обучения Смоленского государственного университета http://cdo.smolgu.ru
- Электронно-библиотечная система университета http://biblioteka.smolgu.ru
- Национальный открытый университет http://www.intuit.ru
- Общероссийский математический портал http://www.mathnet.ru

8. Материально-техническое обеспечение

Учебная аудитория для проведения занятий лекционного типа, оснащенная стандартной учебной мебелью, интерактивной доской, мультимедиапроектором, ноутбуком и колонками.

Учебная аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная стандартной учебной мебелью, компьютерами с выходом в Интернет.

Помещение для самостоятельной работы – компьютерный класс с доступом к сети «Интернет» и ЭИОС СмолГУ.

9. Программное обеспечение

Для осуществления образовательного процесса по дисциплине используется Информационно-вычислительный центр физико-математического факультета.

При осуществлении образовательного процесса по дисциплине используются:

- 1.Система дистанционного обучения СмолГУ. URL: http://www.cdo.smolgu.ru. (СДО Русский Moodle 3KL Norm с техническим обслуживанием, Акт на передачу прав №УТДЮ0001785 от 06.12.2016)
- 2. Microsoft Open License (Windows XP, 7, Office 2003-2016) Лицензия 66975477 от 03.06.2016 в составе: ОС Windows, MS Excel 2003/2007.

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

Сертификат: 03B6A3C600B7ADA9B742A1E041DE7D81B0 Владелец: Артеменков Михаил Николаевич Действителен: с 04.10.2021 до 07.10.2022