Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Смоленский государственный университет»

Кафедра аналитических и цифровых технологий

	Проректор по учебно- «24» июня 2022 г.	«УТВЕРЖДАЮ методической работе Ю.А. Устименко
	программа дисциплины В Введение в Data Science	
Направление подготовки: 38.04.04 Го Направленность (профиль): Государо	• •	• •
Форма обучения — заочная Курс — 2 Семестр — 4		

Всего зачетных единиц – 5, часов – 180

Программу разработал кандидат педагогических наук, доцент Бояринов Д.А.

Одобрена на заседании кафедры аналитических и цифровых технологий «<u>23</u>» <u>июня</u> 2022 г., протокол № <u>10</u>

Заведующий кафедрой _______ Д.С. Букачев

1. Место дисциплины в структуре ОП

Дисциплина «Big Data и основы искусственного интеллекта» относится к части, формируемой участниками образовательных отношений магистерской программы "Государственное и муниципальное управление" по направлению подготовки 38.04.04 Государственное и муниципальное управление.

Дисциплина «Big Data и основы искусственного интеллекта» находится в логической и содержательно-методической взаимосвязи со следующими дисциплинами данной образовательной программы: «Современные информационно-коммуникационные технологии в научных исследованиях»; «Корпоративные информационные системы» и др.

Изучение дисциплины предполагает сочетание фундаментальной подготовки с освоением технологии проектирования специализированных программных продуктов и систем, ориентированных на автоматизацию экономической деятельности.

Компетенции, знания, навыки и умения, приобретенные в ходе изучения дисциплины, должны всесторонне использоваться и развиваться студентами:

- в процессе изучения последующих дисциплин по учебному плану, при выполнении аналитических расчетов, проведении научных исследований, при прохождении практики, подготовке и защите магистерской диссертации;
 - в процессе последующей профессиональной деятельности.

2. Планируемые результаты обучения по дисциплине

Компетенция	Индикаторы достижения		
ПК-1	Знать: современные методы диагностики, анализа и моделирования		
Способен	социально-экономических процессов в различных сферах		
обосновывать	профессиональной деятельности; методы машинного обучения;		
управленческие	принципы построения управленческих и экономических экспертных		
решения, владея	систем; процесс моделирования задач социально-экономического		
современными	характера; основные методы построения и исследования моделей в		
методами	математической экономике; основные понятия и методы		
диагностики,	математической статистики		
анализа и	Уметь: строить и обучать модели машинного обучения; создавать базы		
моделирования	знаний экспертных систем; использовать основные модели и методы		
социально-	математической экономики для определения соответствующих		
экономических	экономических показателей, делать экономические выводы; применять		
процессов	методы математической статистики для обработки экономических		
	данных, анализировать результаты расчетов и обосновывать		
	полученные выводы при решении профессиональных задач в		
	различных сферах государственного и муниципального управления.		
	Владеть: навыками диагностирования, анализа и моделирования		
	социально-экономических процессов в сфере государственного и		
	муниципального управления для обоснования эффективности		
	принимаемых управленческих решений; технологиями анализа		
	больших массивов данных; программными средствами разработки и		
	тестирования экспертных систем; навыками проведения экономических		
	расчетов с применением современного математического аппарата;		
	навыками формулирования экономических выводов, прогнозов,		
	рекомендаций с применением соответствующих информационных		
	технологий; методикой построения, анализа и применения		
	математических моделей для оценки состояния и прогноза развития		
	социально-экономических явлений и процессов.		
ПК-5	Знать: основные понятия, теории и модели пространственной		
Способен	экономики и управления; концепцию устойчивого развития;		

разрабатывать комплексный подход к устойчивому развитию и продвижению территорий, владея навыками анализа и организации пространственно го развития территорий, технологиями и моделями управления регионом и муниципальным образованием

особенности пространственного развития России, различия регионов; методы территориального анализа и диагностики территориальных проблем; методы управления пространственным развитием и продвижения территорий; методы оценки эффективности управления развитием и продвижением территории.

Уметь: проводить экономические расчеты с применением современного математического аппарата, формулировать выводы, строить прогнозы и давать рекомендации для устойчивого развития и продвижения территории; критически оценивать перспективы и эффективность внедрения новых технологий и моделей управления развитием и продвижением территории; разрабатывать инструменты развития и продвижения территории.

Владеть: программными средствами для решения задач кластеризации и экстраполяции, навыками анализа эффективности функционирования экспертных систем, навыками использования основных моделей и методов математической экономики для анализа социально-экономических показателей развития территории, территориальных различий и их динамики, анализа моделей управления регионом и муниципальным образованием и построения формальных моделей предметной области в сфере управления и продвижения региона и муниципального образования.

3. Содержание дисциплины

Тема 1. Большие данные.

Теория и практика больших данных. Методики анализа больших данных. Аналитические инструменты больших данных. Рынки решений для управления большими данными. Платформы больших данных (BDP, Big Data Platform).

Тема 2. Ознакомление с технологиями искусственного интеллекта.

Интеллект. Коэффициент интеллекта (IQ). Вторая проблема Гильберта. Алгоритм. Алгоритмически неразрешимые проблемы. Искусственный интеллект. Основные направления искусственного интеллекта. Основные признаки интеллектуальных информационных систем.

Тема 3. Исскусственные нейронные сети как инструмент анализа и экстраполяции данных.

Искусственный нейрон. Искусственная нейронная сеть. Однослойный персептрон. Многослойные нейронные сети. Обучение искусственной нейронной сети. Эффект переобученности сети. Экстраполяция данных с использованием искусственных нейронных сетей. Метод входного окна.

Тема 4. Экспертные системы продукционного типа как средство поддержки принятия решений.

Экспертные системы. Модели представления знаний. Типовая структура экспертной системы. Задачи, решаемые с помощью экспертных систем. Мировой опыт внедрения. Примеры экспертных систем.

Тема 5. Анализ данных с использованием деревьев решений.

Механизмы анализа big data. Алгоритм построения деревьев решений. Файл имён переменных. Файл данных. Файл стоимости ошибки. Структура правила.

Тема 6. Генетические алгоритмы

Оптимизация методом градиентного спуска. Генетические алгоритмы: суть, основные компоненты, алгоритм функционирования. Операторы ГА. Селекция. Скрещивание. Мутация. Применение ГА.

4. Тематический план

		Формы занятий				
№ п/п	Разделы и темы	Всего часов	Лекции	Практич. занятия	Лабора- торные занятия	Самостоя- тельная работа
1.	Большие данные	38	1	2	0	35
2	Ознакомление с технологиями искусственного интеллекта	27	1	2	0	24
3.	Исскусственные нейронные сети как инструмент анализа и экстраполяции данных	27	1	2	0	24
4.	Экспертные системы продукционного типа как средство поддержки принятия решений	27	1	2	0	24
5.	Анализ данных с использованием деревьев решений	24	0	0	0	24
6.	Генетические алгоритмы	28	0	0	0	28
	Подготовка к экзамену	9	0	0	0	9
	ИТОГО	180	4	8	0	168

5. Виды образовательной деятельности

Занятия лекционного типа

Тема 1. Большие данные.

Лекция 1. Обзор сфер практического применения сквозных технологий Технологии блокчейна. Структура распределенного реестра данных.

Методы анализа, применимые к большим данным. Методы класса Data Mining. Методы категоризации новых данных на основе принципов, ранее применённых.

Вопросы для самостоятельного изучения темы 1

- 1. Понятие структурированности данных.
- 2. Источники больших данных:
- 3. Интернет вещей и социальные медиа-ресурсы.
- 4. Аналитические инструменты больших данных.
- 5. Использование моделей, построенных на базе статистического анализа и машинного обучения для получения комплексных прогнозов на основе базовых моделей. Ensemble Learning.
 - 6. Какие факторы сдерживают развитие технологий Big Bata?
 - 7. Оцифровка нечисловых данных.
- 8. Роль и сущность многомерных статистических методов в экономике, управлении, финансах.
- 9. Многомерное нормальное распределение как основная модель современных многомерных статистических методов.
- 10. Практическое применение методов в финансовых, экономических и социальных исследованиях.
- 11. Методы статистического оценивания многомерных параметров и проверки гипотез.

- 12. Особенности анализа количественных и качественных признаков.
- 13. Постановка основных прикладных задач классификации многомерных наблюдений.
 - 14. Классификация с обучением и без обучения. Сущность методов классификации.
- 15. Кластерный анализ. Меры однородности объектов. Расстояния между объектами. Расстояния между кластерами.
- 16. Реализация методов кластерного анализа в современных пакетах прикладных программ.
 - 17. Кластерный анализ финансовой деятельности предприятий.

Тема 2. Ознакомление с технологиями искусственного интеллекта.

Лекция 1. Интеллект. Коэффициент интеллекта (IQ). Вторая проблема Гильберта. Алгоритм. Алгоритмически неразрешимые проблемы.

Вопросы для самостоятельного изучения темы 2

- 1. Искусственный интеллект.
- 2. Основные направления искусственного интеллекта.
- 3. Основные признаки интеллектуальных информационных систем.
- 4. Что такое коэффициент интеллекта (IQ)? Каковы стандарты IQ?
- 5. Что такое интеллект?
- 6. Существует ли искусственный интеллект сегодня?
- 7. В чём состоит вторая проблема Гильберта?
- 8. Что такое алгоритм?
- 9. Существуют ли алгоритмически неразрешимые проблемы?
- 10. Что такое искусственный интеллект?
- 11. Опишите основные направления искусственного интеллекта.
- 12. Каковы основные признаки интеллектуальных информационных систем?

Тема 3. Исскусственные нейронные сети как инструмент анализа и экстраполяции данных.

Лекция 2. Искусственный нейрон. Искусственная нейронная сеть. Однослойный персептрон. Многослойные нейронные сети. Обучение искусственной нейронной сети.

Вопросы для самостоятельного изучения темы 3

- 1. Эффект переобученности сети.
- 2. Экстраполяция данных с использованием искусственных нейронных сетей.
- 3. Метод входного окна.
- 4. Дать определение понятию: "искусственный нейрон".
- 5. Дать определение понятию: "искусственная нейронная сеть".
- 6. Что такое сумматор нейрона?
- 7. Что такое функция активации?
- 8. В чем заключается процесс обучения сети?
- 9. В чем состоит эффект переобученности сети?
- 10. Изобразите граф нейросети со структурой 2-4-1.
- 11. В каких программных средствах применяется аппарат нейросетей?
- 12. Дайте определение понятию «плохо формализованная задача». Приведите примеры.

Тема 4. Экспертные системы продукционного типа как средство поддержки принятия решений.

Лекция 2. Экспертные системы. Модели представления знаний. Типовая структура экспертной системы. Задачи, решаемые с помощью экспертных систем.

Вопросы для самостоятельного изучения темы 4

- 1. Мировой опыт внедрения.
- 2. Примеры экспертных систем.
- 3. Опишите характерные признаки интеллектуальных информационных систем.
- 4. Что такое экспертная система?
- 3. Какие модели представления знаний применяются при создании экспертных систем?
 - 5. Опишите основные признаки плохо формализуемых задач.
 - 6. Дайте описание типовой архитектуры экспертной системы.
 - 7. Каковы основные преимущества использования экспертных систем?
 - 8. В каких сферах применение экспертных систем наиболее распространено?
 - 9. Что из себя представляет экспертная оболочка?

Тема 5. Анализ данных с использованием деревьев решений.

Вопросы для самостоятельного изучения темы 5

- 1. Как работает алгоритм построения деревьев решений?
- 2. Что понимается под признаками?
- 3. Для чего служит файл имён переменных?
- 4. Как разрабатывается файл данных?
- 5. Почему файл стоимости, хотя и является необязательным файлом для программы, но весьма полезен?
 - 6. Какая информация содержится в окне перекрёстных ссылок?
 - 7. Из каких фрагментов состоит правило, выработанное программой?

Тема 6. Генетические алгоритмы

Вопросы для самостоятельного изучения темы 6

- 1. Каковы "источники" ГА?
- 2. Какие генетические операторы используются в ГА?
- 3. Какую роль в ГА играет оператор репродукции (ОР)?
- 4. Опишите реализацию ОР в виде колеса рулетки и приведите пример его работы.
- 5. Придумайте другую реализацию ОР.
- 6. Опишите одноточечный оператор кроссинговера (ОК) и приведите пример его работы.
- 7. Предложите другую реализацию ОК.
- 8. Какую роль играет оператор мутации (ОМ)?
- 9. Опишите ОМ и приведите пример его работы.
- 10. Предложите другую реализацию ОМ.
- 11. Каковы основные параметры ГА?

Занятия семинарского типа (практические занятия)

Практическое занятие №1. Большие данные

Задание 1. Выполните аналитический расчет данных по структуре и динамики расходов организации в виде расходов сотрудников и отделов, если имеются данные о расходах сотрудников организации. Данные хранятся в связанных таблицах: таблице отделов, таблице сотрудников, таблице видов расходов и таблице расходов. Создайте диаграмму динамики расходов.

Задание 2. Представлены исходные данные о перевозках некоторой транспортной

компании за определенный период, в которых имеется информация о расстояниях до пунктов назначения. Необходимо выполнить расчет динамики ежемесячного заработка водителей, если известен тариф перевозок с учетом 25% надбавки водителю от каждой поездки. Рассчитайте темп роста доходов транспортной компании и представьте результат в виде диаграммы.

Задание 3. Представлены данные о застрахованных грузах, страховых случаях и выявившихся фактах связанного с ними мошенничества со стороны грузополучателей за некоторый период. Сформируйте признаки подозрительных грузов в зависимости от характера груза, грузополучателя и грузоотправителя.

Задание 4. Имеются данные о покупках товаров посетителями супермаркета. Предложите варианты расстановки товаров в секциях магазина и на полках витрин. Обоснуйте свое решение на основе ассоциативных правил.

Практическое занятие №2. Нейроэмулятор

Цель работы: изучить возможности моделирования искусственных нейронных сетей в программах-нейроэмуляторах.

Программное обеспечение и материалы: табличный процессор MS Excel, нейроэмулятор NeurEx.

Задания для аудиторной работы:

- 1. Ознакомиться с основными языковыми конструкциями NNScript (см. файл справки).
- 2. В файле справки найти скрипт, реализующий 3 логических операции с помощью нейронной сети. Загрузить скрипт в нейроэмулятор (в виде текстового документа), обучить нейронную сеть, провести тестирование.

Задания для самостоятельного выполнения:

На языке NNScript дать описание нейромодели, реализующей, как минимум, 5 логических бинарных операций. Загрузить полученный скрипт в нейроэмулятор, обучить нейронную сеть, провести тестирование.

Практическое занятие №3. Нейропрогноз

Цель работы: сравнить технологии прогнозирования с использованием трендовых моделей и искусственных нейронных сетей.

Программное обеспечение и материалы: табличный процессор MS Excel, специализированное ПО «Нейропрогноз» (авторская разработка).

Задания для аудиторной работы:

- 1. Осуществить прогнозирование временного ряда на 4 временных периода вперед с использованием трендовых моделей MS Excel. Обосновать выбор шаблона для аппроксимации. Сравнить результат с контрольными значениями.
- 2. Осуществить прогнозирование временного ряда на 4 временных периода вперед с использованием программы «Нейропрогноз», подобрав оптимальную структуру нейронной сети, вид функции активации, ширину «входного окна». Сравните прогноз с результатами, полученными при выполнении задания 1, и с контрольными значениями.

Задания для самостоятельного выполнения:

Осуществите прогнозирование значений реального временного ряда с использованием трендовых моделей MS Excel и аппарата нейронных сетей. Сравните результаты. Используйте открытые данные из официального источника (например, сайта Росстата).

Практическое занятие №4. Экспертная система продукционного типа

Цель работы: создать экспертную систему продукционного типа с использованием экспертной оболочки.

Программное обеспечение и материалы: оболочка экспертной системы продукционного типа ExpertSystem, актуальная версия MS Visual Studio.

Задания для аудиторной работы:

1. Создайте базу знаний для оценки кредитоспособность физического лица.

Наполнение базы знаний должно быть таковым, чтобы последовательность сработавших правил в режиме вывода была больше 5, а сама последовательность правил должна быть такой, чтобы последующие правила использовали в своих посылках факты, порожденные предыдущими правилами.

Также содержимое базы знаний должно позволять продемонстрировать отличия в работе механизма вывода при различных методах разрешения конфликтов.

- 2. Перейдите в режим работы с механизмом вывода и сформируйте запрос к базе знаний, а последовательность вывода продемонстрируйте и объясните преподавателю.
- 3. Несколько раз измените параметры вывода, найдите отличия, происходящие в последовательности вывода, проанализируйте их, продемонстрируйте и объясните преподавателю.

Задания для самостоятельного выполнения:

Используя созданную базу знаний, написать программу на любом языке высокого уровня, реализующую вывод на основе созданной базы знаний (структура файла базы знаний прилагается). Пример чтения файла базы знаний на языке C++ прилагается.

6. Критерии оценивания результатов освоения дисциплины

6.1. Оценочные средства и критерии оценивания для текущей аттестации

1) Практические задания (примеры)

Практическое задание 1. На языке NNScript дать описание нейромодели, реализующей, как минимум, 5 логических бинарных операций. Загрузить полученный скрипт в нейроэмулятор, обучить нейронную сеть, провести тестирование.

Практическое задание 2. Осуществите прогнозирование значений реального временного ряда с использованием трендовых моделей MS Excel и аппарата нейронных сетей. Сравните результаты. Используйте открытые данные из официального источника (например, сайта Росстата).

*Практическое задание 3.*Используя созданную базу знаний, написать программу на любом языке высокого уровня, реализующую вывод на основе созданной базы знаний (структура файла базы знаний прилагается). Пример чтения файла базы знаний на языке C++ прилагается.

Критерии оценивания выполнения практических заданий

Tryfife ynn ogenidding benovinenna nyaktu feekin sagannii	
Уровень выполнения	Оценка
Задача решена в полном объёме, алгоритмические и	
вычислительные ошибки отсутствуют, проведен анализ	1
полученного решения.	
Задача решена в полном объёме с незначительными	
техническими ошибками или отсутствует анализ	1,5
результатов решения.	
Задача решена не полностью или в решении	
присутствуют ошибки алгоритмического характера,	1
незначительно влияющие на ход решения.	

Задача решена не полностью и в решении присутствует	
значительное количество ошибок алгоритмического	0,5
характера, существенно влияющих на ход решения.	
Задача не решена.	0

2). Вопросы для самостоятельного изучения (примеры)

Тема 1

- 1. Понятие структурированности данных.
- 2. Источники больших данных:
- 3. Интернет вещей и социальные медиа-ресурсы.
- 4. Аналитические инструменты больших данных.
- 5. Использование моделей, построенных на базе статистического анализа и машинного обучения для получения комплексных прогнозов на основе базовых моделей. Ensemble Learning.
 - 6. Какие факторы сдерживают развитие технологий Big Bata?
 - 7. Оцифровка нечисловых данных.
- 8. Роль и сущность многомерных статистических методов в экономике, управлении, финансах.
- 9. Многомерное нормальное распределение как основная модель современных многомерных статистических методов.
- 10. Практическое применение методов в финансовых, экономических и социальных исследованиях.
- 11. Методы статистического оценивания многомерных параметров и проверки гипотез.
 - 12. Особенности анализа количественных и качественных признаков.
- 13. Постановка основных прикладных задач классификации многомерных наблюдений.
 - 14. Классификация с обучением и без обучения. Сущность методов классификации.
- 15. Кластерный анализ. Меры однородности объектов. Расстояния между объектами. Расстояния между кластерами.
- 16. Реализация методов кластерного анализа в современных пакетах прикладных программ.
 - 17. Кластерный анализ финансовой деятельности предприятий.

Тема 2

- 1. Искусственный интеллект.
- 2. Основные направления искусственного интеллекта.
- 3. Основные признаки интеллектуальных информационных систем.
- 4. Что такое коэффициент интеллекта (IQ)? Каковы стандарты IQ?
- 5. Что такое интеллект?
- 6. Существует ли искусственный интеллект сегодня?
- 7. В чём состоит вторая проблема Гильберта?
- 8. Что такое алгоритм?
- 9. Существуют ли алгоритмически неразрешимые проблемы?
- 10. Что такое искусственный интеллект?
- 11. Опишите основные направления искусственного интеллекта.
- 12. Каковы основные признаки интеллектуальных информационных систем?

Тема 3

- 1. Эффект переобученности сети.
- 2. Экстраполяция данных с использованием искусственных нейронных сетей.

- 3. Метод входного окна.
- 4. Дать определение понятию: "искусственный нейрон".
- 5. Дать определение понятию: "искусственная нейронная сеть".
- 6. Что такое сумматор нейрона?
- 7. Что такое функция активации?
- 8. В чем заключается процесс обучения сети?
- 9. В чем состоит эффект переобученности сети?
- 10. Изобразите граф нейросети со структурой 2-4-1.
- 11. В каких программных средствах применяется аппарат нейросетей?
- 12. Дайте определение понятию «плохо формализованная задача». Приведите примеры.

Тема 4

- 1. Мировой опыт внедрения.
- 2. Примеры экспертных систем.
- 3. Опишите характерные признаки интеллектуальных информационных систем.
- 4. Что такое экспертная система?
- 3. Какие модели представления знаний применяются при создании экспертных систем?
 - 5. Опишите основные признаки плохо формализуемых задач.
 - 6. Дайте описание типовой архитектуры экспертной системы.
 - 7. Каковы основные преимущества использования экспертных систем?
 - 8. В каких сферах применение экспертных систем наиболее распространено?
 - 9. Что из себя представляет экспертная оболочка?

Тема 5

- 1. Как работает алгоритм построения деревьев решений?
- 2. Что понимается под признаками?
- 3. Для чего служит файл имён переменных?
- 4. Как разрабатывается файл данных?
- 5. Почему файл стоимости, хотя и является необязательным файлом для программы, но весьма полезен?
 - 6. Какая информация содержится в окне перекрёстных ссылок?
 - 7. Из каких фрагментов состоит правило, выработанное программой?

Тема 6

- 1. Каковы "источники" ГА?
- 2. Какие генетические операторы используются в ГА?
- 3. Какую роль в ГА играет оператор репродукции (ОР)?
- 4. Опишите реализацию ОР в виде колеса рулетки и приведите пример его работы.
- 5. Придумайте другую реализацию ОР.
- 6. Опишите одноточечный оператор кроссинговера (ОК) и приведите пример его работы.
- 7. Предложите другую реализацию ОК.
- 8. Какую роль играет оператор мутации (ОМ)?
- 9. Опишите ОМ и приведите пример его работы.
- 10. Предложите другую реализацию ОМ.
- 11. Каковы основные параметры ГА?

Критерии оценивания ответов на теоретические вопросы

Уровень ответа	Оценка

Полно и аргументировано отвечает по содержанию	
темы; может обосновать свои суждения, применить	
знания на практике, привести необходимые примеры не	2
только из лекции, но и самостоятельно составленные;	
излагает материал последовательно и корректно.	
Дает ответ, удовлетворяющий тем же требованиям, что	
и для оценки «5», но допускает 1-2 ошибки, которые сам	1,5
же исправляет.	
Излагает материал неполно и допускает неточности в	
определении понятий или формулировке правил; не	
умеет достаточно глубоко и доказательно обосновать	1
свои суждения и привести свои примеры; излагает	
материал непоследовательно и допускает ошибки.	
Допускает существенные ошибки в формулировке	
определений и алгоритмов, искажающие их смысл,	0,5
беспорядочно и неуверенно излагает материал.	
Не знает ответ на вопрос.	0

3) Курсовой проект "Сравнение методик прогнозирования временных рядов"

Требования к курсовому проекту:

Постановка задачи. Выполните задания в соответствии с методическими рекомендациями. В качестве результата приложите отчёт по курсовому проекту.

Задание 1. Осуществите прогнозирование значений *реального временного ряда* с использованием трендовых моделей MS Excel и аппарата искусственных нейронных сетей. Используйте открытые данные из официального источника (например, сайта Росстата).

В качестве исходных данных возьмите любой реальный временной ряд длиной 20 - 30 последовательных значений. Если данные слишком большие по значениям, осуществите их предварительную нормализацию. Несколько последних значений (2-3) оставьте в качестве контрольных (для вычисления погрешности и оценки качества результатов прогнозирования).

Вычислите погрешность прогнозирования с помощью трендовых моделей. Вставьте в отчёт по курсовому проекту необходимые скриншоты и описание полученных результатов.

Задание 2. Осуществите прогнозирование значений этого же временного ряда с использованием аппарата нейронных сетей (Forecast Demo.exe). Вычислите погрешность прогнозирования с помощью искусственной нейронной сети. Вставьте в отчёт по курсовому проекту необходимые скриншоты и описание полученных результатов.

Задание 3. Сравните результаты. Какая методика дала более качественный прогноз? Вставьте в отчёт по курсовому проекту необходимые скриншоты и описание полученных результатов.

Для получения реальных данных можно также использовать программу для выгрузки данных с биржи Binance. При использовании программы указывайте количество временных периодов = 50.

Критерии оценивания заданий курсового проекта.

Уровень выполнения	Оценка
Задача решена в полном объёме, алгоритмические и	
вычислительные ошибки отсутствуют, проведен анализ	1
полученного решения.	
Задача решена в полном объёме с незначительными	
техническими ошибками или отсутствует анализ	1,5
результатов решения.	
Задача решена не полностью или в решении	
присутствуют ошибки алгоритмического характера,	1
незначительно влияющие на ход решения.	
Задача решена не полностью и в решении присутствует	
значительное количество ошибок алгоритмического	0,5
характера, существенно влияющих на ход решения.	
Задача не решена.	0

6.2. Оценочные средства и критерии оценивания для промежуточной аттестации Форма промежуточной аттестации - экзамен

Экзаменационные вопросы:

- 1. Теория и практика больших данных.
- 2. Методики анализа больших данных.
- 3. Аналитические инструменты больших данных.
- 4. Рынки решений для управления большими данными.
- 5. Платформы больших данных (BDP, Big Data Platform).
- 6. Интеллект.
- 7. Коэффициент интеллекта (IQ).
- 8. Вторая проблема Гильберта.
- 9. Алгоритм.
- 10. Алгоритмически неразрешимые проблемы.
- 11. Искусственный интеллект.
- 12. Основные направления искусственного интеллекта.
- 13. Основные признаки интеллектуальных информационных систем.
- 14. Искусственный нейрон.
- 15. Искусственная нейронная сеть.
- 16. Однослойный персептрон.
- 17. Многослойные нейронные сети.
- 18. Обучение искусственной нейронной сети.
- 19. Эффект переобученности сети.
- 20. Экстраполяция данных с использованием искусственных нейронных сетей.
- 21. Метод входного окна.
- 22. Экспертные системы.
- 23. Модели представления знаний.
- 24. Типовая структура экспертной системы.
- 25. Задачи, решаемые с помощью экспертных систем.
- 26. Мировой опыт внедрения экспертных систем.
- 27. Примеры экспертных систем.
- 28. Механизмы анализа big data.
- 29. Алгоритм построения деревьев решений.
- 30. Файл имён переменных. Файл данных.
- 31. Файл стоимости ошибки.
- 32. Структура правила.
- 33. Оптимизация методом градиентного спуска.

- 34. Генетические алгоритмы: суть, основные компоненты, алгоритм функционирования.
 - 35. Операторы ГА.
 - 36. Селекция.
 - 37. Скрещивание.
 - 38. Мутация.
 - 39. Применение ГА.

Критерии оценивания уровня овладения студентами компетенциями на экзамене

Оценка по дисциплине складывается из трех составляющих:

- успешность текущей работы в течение семестра (А);
- бонусных баллов (B);
- успешность ответа на теоретические экзаменационные вопросы (C).

Пусть A_{max} — максимальный суммарный балл за текущую работу, C_{max} — максимальный балл за прохождение экзаменационного теста. Тогда оценка по 100-балльной шкале определяется следующим образом:

$$R_{100} = Min(100, 50 (A + B) / A_{max} + 50 C / C_{max}).$$

Оценка на экзамене определяется по таблице:

Оценка по	Оценка по	Оценка по 100-балльной шкале
5-балльной шкале	10-балльной	
	шкале	
5 – «отлично»	10	95-100 баллов
	9	91-95 баллов
	8	86-90 баллов
4 – «хорошо»	7	79-85 баллов
	6	71-78 баллов
3 – «удовлетворительно»	5	63-70 баллов
	4	56-62 баллов
2 – «неудовлетворительно»	3	38-55 баллов
	2	19-37 баллов
	1	0-18 баллов

7. Перечень основной и дополнительной учебной литературы 7.1. Основная литература

- 1. Загорулько, Ю. А. Искусственный интеллект. Инженерия знаний: учебное пособие для вузов / Ю. А. Загорулько, Г. Б. Загорулько. Москва: Издательство Юрайт, 2019. 93 с. (Университеты России). ISBN 978-5-534-07198-6. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/442134.
- 2. Бессмертный, И. А. Интеллектуальные системы : учебник и практикум для академического бакалавриата / И. А. Бессмертный, А. Б. Нугуманова, А. В. Платонов. Москва : Издательство Юрайт, 2019. 243 с. (Бакалавр. Академический курс). ISBN 978-5-534-01042-8. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/433716

7.2. Дополнительная литература

- 1. Кудрявцев, В. Б. Интеллектуальные системы : учебник и практикум для вузов / В. Б. Кудрявцев, Э. Э. Гасанов, А. С. Подколзин. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2019. 165 с. (Высшее образование). ISBN 978-5-534-07779-7. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/423761.
- 2. Информационные системы в экономике : учебник для академического бакалавриата [электронный ресурс] В. Н. Волкова, В. Н. Юрьев, С. В. Широкова, А. В. Логинова ; под ред. В. Н. Волковой, В. Н. Юрьева. М. : Издательство Юрайт, 2018. 402 с. (Серия : Бакалавр. Академический курс). ISBN 978-5-9916-1358-3. URL: https://biblio-online.ru/book/1BE316A7-234B-432E-A2F5-D7A0CC512290.

7.3. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

1. Свободно доступные курсы Интернет-университета информационных технологий (ИНТУИТ) http://www.intuit.ru/:

https://www.intuit.ru/studies/courses/1122/167/info, https://www.intuit.ru/studies/courses/3521/763/info

- 2. Открытые курсы Массачусетского технологического института в США (*MIT OpenCourseWare*): http://ocw.mit.edu/OcwWeb/web/home/home/index.htm.
- 3. Интернет-портал компании СКБ «Контур»: https://kontur.ru.

8. Материально-техническое обеспечение

Учебная аудитория для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации: 214000, г. Смоленск, ул. Пржевальского, д.4, уч. корпус №2, ауд. 510.

Стандартная учебная мебель (60 учебных посадочных места), стол и стул для преподавателя – по 1 шт.

Кафедра для лектора – 1 шт.

Доска настенная трехэлементная – 1 шт.

Проекционный экран LUMA – 1 шт.

Мультимедиапроектор Acer – 1 шт.

Ноутбук НР 530 – 1шт.

Колонки Genius – 1 шт.

Помещение для самостоятельной работы: 214000, г. Смоленск, ул. Пржевальского, д.4, уч. корпус №2, ауд. 520 (компьютерная лаборатория с выходом в Интернет)

Компьютерный студенческий стол – 15 шт.

Компьютерный стол для преподавателя – 1 шт.

Интерактивная доска IQBoard

Мультимедиа проектор Optoma PX 329 DLP

16 персональных компьютеров с выходом в Интернет

Стандартная учебная мебель (16 учебных посадочных мест).

9. Программное обеспечение

Kaspersky Endpoint Security для бизнеса Стандартный АО «Лаборатория Касперского», лицензия 1FB6-161215-133553-1-6231.

Microsoft Open License, лицензия 49463448 в составе:

- 1. Microsoft Windows Professional 7 Russian;
- 2. Microsoft Office 2010 Russian.

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

Сертификат: 03B6A3C600B7ADA9B742A1E041DE7D81B0 Владелец: Артеменков Михаил Николаевич Действителен: c 04.10.2021 до 07.10.2022